Search results for "Homothetic transformation"

showing 7 items of 7 documents

On the Almost Everywhere Convergence of Multiple Fourier-Haar Series

2019

The paper deals with the question of convergence of multiple Fourier-Haar series with partial sums taken over homothetic copies of a given convex bounded set $$W\subset\mathbb{R}_+^n$$ containing the intersection of some neighborhood of the origin with $$\mathbb{R}_+^n$$ . It is proved that for this type sets W with symmetric structure it is guaranteed almost everywhere convergence of Fourier-Haar series of any function from the class L(ln+L)n−1.

40A05Control and OptimizationBounded set (topological vector space)Type (model theory)01 natural sciencesmultiple Fourier-Haar seriesHomothetic transformationCombinatoricssymbols.namesakeSettore MAT/05 - Analisi Matematica0103 physical sciences42C10Almost everywhere0101 mathematicsMathematicsSeries (mathematics)Applied Mathematics010102 general mathematicsRegular polygonAlmost everywhere convergenceFunction (mathematics)Fourier transformsymbols010307 mathematical physicslacunar serieAnalysisJournal of Contemporary Mathematical Analysis (Armenian Academy of Sciences)
researchProduct

Planar maps whose second iterate has a unique fixed point

2007

Let a>0, F: R^2 -> R^2 be a differentiable (not necessarily C^1) map and Spec(F) be the set of (complex) eigenvalues of the derivative F'(p) when p varies in R^2. (a) If Spec(F) is disjoint of the interval [1,1+a[, then Fix(F) has at most one element, where Fix(F) denotes the set of fixed points of F. (b) If Spec(F) is disjoint of the real line R, then Fix(F^2) has at most one element. (c) If F is a C^1 map and, for all p belonging to R^2, the derivative F'(p) is neither a homothety nor has simple real eigenvalues, then Fix(F^2) has at most one element, provided that Spec(F) is disjoint of either (c1) the union of the number 0 with the intervals ]-\infty, -1] and [1,\infty[, or (c2) t…

Discrete mathematics37G10; 37G15; 34K18Algebra and Number TheoryApplied Mathematics37G15Dynamical Systems (math.DS)Fixed point37G10Homothetic transformationPlanar graphSet (abstract data type)symbols.namesakeMathematics - Classical Analysis and ODEsSimple (abstract algebra)Classical Analysis and ODEs (math.CA)FOS: MathematicssymbolsEmbeddingDifferentiable functionMathematics - Dynamical Systems34K18AnalysisEigenvalues and eigenvectorsMathematicsJournal of Difference Equations and Applications
researchProduct

Regularity properties of spheres in homogeneous groups

2015

We study left-invariant distances on Lie groups for which there exists a one-parameter family of homothetic automorphisms. The main examples are Carnot groups, in particular the Heisenberg group with the standard dilations. We are interested in criteria implying that, locally and away from the diagonal, the distance is Euclidean Lipschitz and, consequently, that the metric spheres are boundaries of Lipschitz domains in the Euclidean sense. In the first part of the paper, we consider geodesic distances. In this case, we actually prove the regularity of the distance in the more general context of sub-Finsler manifolds with no abnormal geodesics. Secondly, for general groups we identify an alg…

Mathematics - Differential GeometryPure mathematicsGeodesicjoukot (matematiikka)General MathematicsGroup Theory (math.GR)algebra01 natural sciencessets (mathematics)Homothetic transformationMathematics - Metric Geometry0103 physical sciencesEuclidean geometryFOS: MathematicsHeisenberg groupMathematics::Metric GeometryMathematics (all)spheres0101 mathematicsMathematics28A75 22E25 53C60 53C17 26A16homogeneous groupsmatematiikkamathematicsGroup (mathematics)Applied Mathematicsta111010102 general mathematicsLie groupMetric Geometry (math.MG)Lipschitz continuityAutomorphismDifferential Geometry (math.DG)regularity properties010307 mathematical physicsMathematics - Group TheoryMathematics (all); Applied Mathematics
researchProduct

Rigidity of quasi-isometries for symmetric spaces and Euclidean buildings

1997

Abstract We study quasi-isometries between products of symmetric spaces and Euclidean buildings. The main results are that quasi-isometries preserve the product structure, and that in the irreducible higher rank case, quasi-isometries are at finite distance from homotheties.

Mostow rigidity theoremPure mathematicsEuclidean spaceGeneral MathematicsMathematical analysisGeneral MedicineCurvatureHomothetic transformationEuclidean distanceRigidity (electromagnetism)Number theorySymmetric spaceEuclidean geometryIsometryMathematics::Metric GeometryEuclidean plane isometryMathematicsPublications mathématiques de l'IHÉS
researchProduct

Aligned Electric and Magnetic Weyl Fields

2003

We analyze the spacetimes admitting a direction for which the relative electric and magnetic Weyl fields are aligned. We give an invariant characterization of these metrics and study the properties of its Debever null vectors. The directions 'observing' aligned electric and magnetic Weyl fields are obtained for every Petrov type. The results on the no existence of purely magnetic solutions are extended to the wider class having homothetic electric and magnetic Weyl fields.

PhysicsGeneral Relativity and Quantum CosmologyTheoretical physicsPhysics and Astronomy (miscellaneous)FOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)Type (model theory)Invariant (mathematics)Null (physics)General Relativity and Quantum CosmologyHomothetic transformationGeneral Relativity and Gravitation
researchProduct

Some overdetermined problems related to the anisotropic capacity

2018

Abstract We characterize the Wulff shape of an anisotropic norm in terms of solutions to overdetermined problems for the Finsler p-capacity of a convex set Ω ⊂ R N , with 1 p N . In particular we show that if the Finsler p-capacitary potential u associated to Ω has two homothetic level sets then Ω is Wulff shape. Moreover, we show that the concavity exponent of u is q = − ( p − 1 ) / ( N − p ) if and only if Ω is Wulff shape.

Pure mathematics0211 other engineering and technologiesConvex set02 engineering and technology01 natural sciencesHomothetic transformationOverdetermined systemMathematics - Analysis of PDEs35N25 35B06 35R25FOS: MathematicsConcavity exponent0101 mathematicsAnisotropyMathematics021103 operations researchCapacityApplied Mathematics010102 general mathematicsAnalysiWulff shapeAnisotropic normExponentOverdetermined problemMathematics::Differential GeometryAnalysisAnalysis of PDEs (math.AP)
researchProduct

Hyperbolicity as an obstruction to smoothability for one-dimensional actions

2017

Ghys and Sergiescu proved in the $80$s that Thompson's group $T$, and hence $F$, admits actions by $C^{\infty}$ diffeomorphisms of the circle . They proved that the standard actions of these groups are topologically conjugate to a group of $C^\infty$ diffeomorphisms. Monod defined a family of groups of piecewise projective homeomorphisms, and Lodha-Moore defined finitely presentable groups of piecewise projective homeomorphisms. These groups are of particular interest because they are nonamenable and contain no free subgroup. In contrast to the result of Ghys-Sergiescu, we prove that the groups of Monod and Lodha-Moore are not topologically conjugate to a group of $C^1$ diffeomorphisms. Fur…

Pure mathematicsMathematics::Dynamical Systems[ MATH.MATH-GR ] Mathematics [math]/Group Theory [math.GR][ MATH.MATH-DS ] Mathematics [math]/Dynamical Systems [math.DS][MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS]Group Theory (math.GR)Dynamical Systems (math.DS)Fixed pointPSL01 natural sciences[MATH.MATH-GR]Mathematics [math]/Group Theory [math.GR]57M60Homothetic transformationMathematics::Group Theorypiecewise-projective homeomorphisms0103 physical sciencesFOS: Mathematics0101 mathematicsMathematics - Dynamical SystemsMathematics::Symplectic GeometryMathematicsreal37C85 57M60 (Primary) 43A07 37D40 37E05 (Secondary)diffeomorphismsPrimary 37C85 57M60. Secondary 43A07 37D40 37E0543A07Group (mathematics)37C8537D40010102 general mathematicsMSC (2010) : Primary: 37C85 57M60Secondary: 37D40 37E05 43A0737E0516. Peace & justiceAction (physics)hyperbolic dynamicsrigidityc-1 actionsbaumslag-solitar groupshomeomorphismslocally indicable groupPiecewiseInterval (graph theory)010307 mathematical physicsGeometry and TopologyTopological conjugacyMathematics - Group Theoryintervalgroup actions on the interval
researchProduct